(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(active(X1), X2, X3)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(mark(X1), X2, X3) → mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(f(a, b, X)) → mark(f(X, X, X))
active(f(X1, X2, X3)) → f(active(X1), X2, X3)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
active(c) → mark(a)
f(mark(X1), X2, X3) → mark(f(X1, X2, X3))
proper(b) → ok(b)
proper(c) → ok(c)
active(c) → mark(b)
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
proper(a) → ok(a)

Rewrite Strategy: INNERMOST

(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4]
transitions:
ok0(0) → 0
c0() → 0
mark0(0) → 0
a0() → 0
b0() → 0
top0(0) → 1
active0(0) → 2
f0(0, 0, 0) → 3
proper0(0) → 4
active1(0) → 5
top1(5) → 1
a1() → 6
mark1(6) → 2
f1(0, 0, 0) → 7
mark1(7) → 3
b1() → 8
ok1(8) → 4
c1() → 9
ok1(9) → 4
b1() → 10
mark1(10) → 2
f1(0, 0, 0) → 11
ok1(11) → 3
proper1(0) → 12
top1(12) → 1
a1() → 13
ok1(13) → 4
mark1(6) → 5
mark1(7) → 7
mark1(7) → 11
ok1(8) → 12
ok1(9) → 12
mark1(10) → 5
ok1(11) → 7
ok1(11) → 11
ok1(13) → 12
active2(8) → 14
top2(14) → 1
active2(9) → 14
active2(13) → 14
proper2(6) → 15
top2(15) → 1
proper2(10) → 15
a2() → 16
mark2(16) → 14
b2() → 17
ok2(17) → 15
b2() → 18
mark2(18) → 14
a2() → 19
ok2(19) → 15
active3(17) → 20
top3(20) → 1
active3(19) → 20
proper3(16) → 21
top3(21) → 1
proper3(18) → 21
b3() → 22
ok3(22) → 21
a3() → 23
ok3(23) → 21
active4(22) → 24
top4(24) → 1
active4(23) → 24

(4) BOUNDS(1, n^1)